skip to main content


Search for: All records

Creators/Authors contains: "Shen, Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present six spectroscopically confirmed massive protostructures, spanning a redshift range of 2.5 < z < 4.5 in the Extended Chandra Deep Field South (ECDFS) field discovered as part of the Charting Cluster Construction in VUDS and ORELSE (C3VO) survey. We identify and characterize these remarkable systems by applying an overdensity measurement technique on an extensive data compilation of public and proprietary spectroscopic and photometric observations in this highly studied extragalactic field. Each of these six protostructures, i.e. a large scale overdensity (volume >9000 cMpc3) of more than 2.5σδ above the field density levels at these redshifts, have a total mass Mtot ≥ 1014.8 M⊙ and one or more highly overdense (overdensity$\, \gt 5\sigma _{\delta }$) peaks. One of the most complex protostructures discovered is a massive (Mtot = 1015.1M⊙) system at z ∼ 3.47 that contains six peaks and 55 spectroscopic members. We also discover protostructures at z ∼ 3.30 and z ∼ 3.70 that appear to at least partially overlap on sky with the protostructure at z ∼ 3.47, suggesting a possible connection. We additionally report on the discovery of three massive protostructures at z = 2.67, 2.80, and 4.14 and discuss their properties. Finally, we discuss the relationship between star formation rate and environment in the richest of these protostructures, finding an enhancement of star formation activity in the densest regions. The diversity of the protostructures reported here provide an opportunity to study the complex effects of dense environments on galaxy evolution over a large redshift range in the early Universe.

     
    more » « less
  2. This paper investigates the mechanism of self-stabilizing, three-dimensional Mie particle manipulation in water via an acoustic tweezer with a single transducer. A carefully designed acoustic lens is attached to the transducer to form an acoustic vortex, which provides angular momentum on the trapped polymer sphere and leads to a fast-spinning motion. The sphere can find equilibrium positions spontaneously during the manipulation by slightly adjusting its relative position, angular velocity, and spinning axis. The spinning motion greatly enhances the low-pressure recirculation region around the sphere, resulting in a larger pressure induced drag. Simultaneously, the Magnus effect is induced to generate an additional lateral force. The spinning motion of the trapped sphere links the acoustic radiation force and hydrodynamic forces together, so that the sphere can spontaneously achieve new force balance and follow the translational motion of the acoustic tweezer. Non-spherical objects can also be manipulated by this acoustic tweezer.

     
    more » « less
  3. ABSTRACT

    Simulations predict that the galaxy populations inhabiting protoclusters may contribute considerably to the total amount of stellar mass growth of galaxies in the early universe. In this study, we test these predictions observationally, using the Taralay protocluster (formerly PCl J1001+0220) at z ∼ 4.57 in the COSMOS field. With the Charting Cluster Construction with VUDS and ORELSE (C3VO) survey, we spectroscopically confirmed 44 galaxies within the adopted redshift range of the protocluster (4.48 < z < 4.64) and incorporate an additional 18 galaxies from ancillary spectroscopic surveys. Using a density mapping technique, we estimate the total mass of Taralay to be ∼1.7 × 1015 M⊙, sufficient to form a massive cluster by the present day. By comparing the star formation rate density (SFRD) within the protocluster (SFRDpc) to that of the coeval field (SFRDfield), we find that SFRDpc surpasses the SFRDfield by Δlog (SFRD/M⊙yr−1 Mpc−3) = 1.08 ± 0.32 (or ∼12 ×). The observed contribution fraction of protoclusters to the cosmic SFRD adopting Taralay as a proxy for typical protoclusters is $33.5~{{\ \rm per\ cent}}^{+8.0~{{\ \rm per\ cent}}}_{-4.3~{{\ \rm per\ cent}}}$, a value ∼2σ higher than the predictions from simulations. Taralay contains three peaks that are 5σ above the average density at these redshifts. Their SFRD is ∼0.5 dex higher than the value derived for the overall protocluster. We show that 68 per cent of all star formation in the protocluster takes place within these peaks, and that the innermost regions of the peaks encase $\sim 50~{{\ \rm per\ cent}}$ of the total star formation in the protocluster. This study strongly suggests that protoclusters drive stellar mass growth in the early universe and that this growth may proceed in an inside-out manner.

     
    more » « less
  4. ABSTRACT

    Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.

     
    more » « less
  5. Abstract

    Acoustic tweezers use ultrasound for contact-free manipulation of particles from millimeter to sub-micrometer scale. Particle trapping is usually associated with either radiation forces or acoustic streaming fields. Acoustic tweezers based on single-beam focused acoustic vortices have attracted considerable attention due to their selective trapping capability, but have proven difficult to use for three-dimensional (3D) trapping without a complex transducer array and significant constraints on the trapped particle properties. Here we demonstrate a 3D acoustic tweezer in fluids that uses a single transducer and combines the radiation force for trapping in two dimensions with the streaming force to provide levitation in the third dimension. The idea is demonstrated in both simulation and experiments operating at 500 kHz, and the achieved levitation force reaches three orders of magnitude larger than for previous 3D trapping. This hybrid acoustic tweezer that integrates acoustic streaming adds an additional twist to the approach and expands the range of particles that can be manipulated.

     
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)